top of page

Data chair with Givaudan


"In flavours and fragrances domains, massive data are complex and are pushing technical limits in many areas, specifically in decision-making and optimization.


The objective of this collaborative work between Givaudan and CentraleSupélec is to face the challenges “Data-to-Knowledge” and “Data-to-Decision” in an integrated way through cutting edge research.

More precisely, one aims at developing breakthrough techniques for dealing with high-dimensional and multi-scale data. Givaudan has and creates, in its activities domain, massive data of different natures. It is essential to exploit these data to improve the understanding or to provide innovative and challenging techniques in the perfumery.

Mainstream statistical models and decision-making algorithms are challenged by such heterogeneous, multi-scale, complex, incomplete and/or uncertain data. In order to generate knowledge, build models and make informed decisions, statistical validity, robustness, computational tractability and causal modelling are mandatory.


This is the scientific purpose of this Chair: developing advanced Machine Learning techniques adapted to such data."

Frédéric Pascal,  professor of L2S laboratory and chairholder

AI chair with Lusis

"Lusis is the publisher of TANGO, a high-performance transactional platform. performance for payments systems and corporate finance. deal.


On the basis of this platform Lusis realizes systems of full payments, including fraud detection, as well as extremely rich and complex front to back trading platforms on which more than US$5 billion is now being processed per day, half of which are spread over Forex and Indices and half over the Raw materials.


Lusis and CentraleSupélec have joined forces in creating a research chair to strengthen their collaboration in the field of Artificial Intelligence applied to the banking domain.

Launched in 2020, the Lusis - CentraleSupélec Chair of Artificial Intelligence develops two main lines of research: fraud detection to credit card payments and automated trading.

Fabrice Popineau, professor of LISN and chairholder


Bridgeable chair

"The Bridgeable chair is one of 16 chairs selected by the ANR. Bridgeable, for BRIDinG thE gAp Between iterative proximaL methods and nEural networks, deals with the links existing between neural networks and certain advanced optimization concepts. It is funded to the tune of 1.3 million euros distributed between the ANR (€ 500,000) and the three partners of the chair: Schneider Electric, GE Healthcare and IFPEN (€ 800,000).

This chair aims to address two main issues: the explainability and reliability of AI based on neural networks. The application ambition is to lead to a new generation of techniques to meet the challenges arising in three fields of application: 3D medical imaging, data analysis in the field of energy and the environment and multivariate non-linear modeling of electrical systems."

Jean-Christophe Pesquet,  director of CVN laboratory and chairholder

Chair with Randstad

This unprecedented academic and scientific partnership is part of a resolutely disruptive and ethical approach to the recruitment process. As in many other fields and sectors of activity, artificial intelligence, its advances and possibilities, as well as the mass and wealth of data relating to employment available, open up many prospects for improving recruitment and human resources, whether from the recruiter's point of view or that of the candidate.

  • A more complete and precise representation of the candidate for the job from a set of diverse and heterogeneous data (CV, historical data, navigation data, profile on professional social networks, data from video interviews, conversations with consultants, chatbots ...). This multitude of data means building new methods of data collection and annotation in order to better understand the candidates and their potential.

  • The treatment of new recruitment tools such as audio-video interviews, through the analysis of the candidate's emotions and personality. These elements can constitute a significant added value in advising candidates, at a time when recruiters' attention is focused on behavioral skills (soft skills).

  • The design and optimization of algorithms in the recruitment process (matching algorithms between a candidate and an offer, recommendation algorithm or techniques for finding candidates or offers) with constant attention paid to the concepts of transparency, trust and interpretability of algorithms. One of the additional challenges is that of algorithmic non-discrimination. The idea is to explore the technological and human means making it possible to guarantee that a candidate is evaluated only on the basis of his skills and his interpersonal skills, without a subjective bias of pre-selection. intervenes in the process.

bottom of page